Icono de modalidad 100% Online
Icono de créditos ECTS 60 ECTS
Icono de duración 1500 H
Icono de flexibilidad horaria Flexibilidad horaria
Precio
2195€
2195€
Seguridad y confianza en tus pagos online.

Descripción

¿Quién puede acceder al master?

Este Máster de Formación Permanente en Business Intelligence y Big Data está dirigido a una gran diversidad de perfiles y es aplicable a cualquier sector, puesto que es adecuado para todas aquellas personas que quieran adquirir conocimientos sobre tecnologías de análisis y procesamiento de datos, sobre todo perfiles informáticos.

Objetivos

  • Entender por qué el Big Data y el Business Intelligence son clave para la transformación digital de una empresa.
  • Saber cuál es el papel del Big Data como fuente de información para la toma de decisiones estratégicas.
  • Aplicar las principales técnicas de Data mining y análisis de datos.
  • Utilizar herramientas como Hadoop, Weka, MongoDB o MySQL para almacenar, gestionar y analizar datos.
  • Programar en los lenguajes Python y R orientados al análisis y visualización de datos.
  • Aprender cómo crear visualizaciones de datos profesionales con Tableau, Qlikview o PowerBI.
  • Analizar datos web relevantes mediante el uso de Google Analytics.

Salidas Profesionales

Cualquier empresa busca diferenciarse del resto de competidores y obtener una ventaja competitiva sacando decisiones estratégicas basada en un gran análisis de datos. Gracias a este Máster de Formación Permanente en Business Intelligence y Big Data optarás a puestos como Analista de datos, Experto en Inteligencia de Negocio, Big Data Engineer, Visual Analyst o Data Scientist.

Temario

  1. Introducción a la transformación digital
  2. Concepto de innovación
  3. Concepto de tecnología
  4. Tipología de la tecnología
  5. Punto de vista de la ventaja competitiva
  6. Según su disposición en la empresa
  7. Desde el punto de vista de un proyecto
  8. Otros tipos de tecnología
  9. La innovación tecnológica
  10. Competencias básicas de la innovación tecnológica
  11. El proceso de innovación tecnológica
  12. Herramientas para innovar
  13. Competitividad e innovación
  1. Filosofía Web 3.0 y su impacto en el mundo empresarial
  2. Socialización de la Web
  3. Adaptación del mundo empresarial a las Nuevas tecnologías
  1. Community Manager
  2. Chief Data Officer
  3. Data Protection Officer
  4. Data Scientist
  5. Otros perfiles
  6. Desarrollo de competencias informáticas
  7. El Papel del CEO como líder en la transformación
  1. La transición digital del modelo de negocio tradicional
  2. Nuevos modelos de negocio
  3. Freemium
  4. Modelo Long Tail
  5. Modelo Nube y SaaS
  6. Modelo Suscripción
  7. Dropshipping
  8. Afiliación
  9. Infoproductos y E-Learning
  10. Otros
  1. Diagnóstico de la madurez digital de la empresa
  2. Análisis de la innovación en la empresa
  3. Elaboración del roadmap
  4. Provisión de financiación y recursos tecnológicos
  5. Implementación del plan de transformación digital
  6. Seguimiento del plan de transformación digital
  1. BBVA y la empresa inteligente
  2. DKV Salud y #MédicosfrentealCOVID
  3. El Corte Inglés
  4. Cepsa y su apuesta por los servicios cloud de AWS
  1. Rediseñando el customer experience
  2. La transformación de los canales de distribución: omnicanalidad
  3. Plan de marketing digital
  4. Buyer´s Journey
  5. Growth Hacking: estrategia de crecimiento
  6. El nuevo rol del marketing en el funnel de conversión
  1. Oportunidades de innovación derivadas de la globalización
  2. Como Inventar Mercados a través de la Innovación
  3. Etapas de desarrollo y ciclos de vida
  4. Incorporación al mercado
  5. Metodologías de desarrollo
  1. La transformación digital de la cadena de valor
  2. La industria 4.0
  3. Adaptación de la organización a través del talento y la innovación
  4. Modelos de proceso de innovación
  5. Gestión de innovación
  6. Sistema de innovación
  7. Como reinventar las empresas innovando en procesos
  8. Innovación en Procesos a través de las TIC
  9. El Comercio Electrónico: innovar en los canales de distribución
  10. Caso de estudio voluntario: La innovación según Steve Jobs
  11. Caso Helvex: el cambio continuo
  12. La automatización de las empresas: RPA, RBA y RDA
  1. ¿Qué es Big Data?
  2. ¿Y Thick Data? ¿Cuál es el matiz para diferenciar ambos términos?
  3. El gran auge del big data
  4. La importancia de almacenar y extraer información
  5. ¿Cual es el papel de las fuentes de datos?
  6. Soluciones novedosas gracias a la selección de datos
  7. Naturaleza de las fuentes de datos Big Data
  1. Thick Data, el valor de lo cualitativo. Entender emociones humanas, intenciones y sentimientos
  2. Fases en un proyecto de Big Data
  3. Big Data enfocado a los negocios
  4. Apoyo del Big Data en el proceso de toma de decisiones
  5. Toma de decisiones operativas
  1. Marketing estratégico y Big Data
  2. Open data
  3. Ejemplo de uso de Open Data
  4. IoT (Internet of Things-Internet de las cosas)
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Big Data en salud
  5. Necesidad de Big Data en la asistencia sanitaria
  6. Retos del big data en salud
  7. Big Data y People Analytics en RRHH
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas Operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de Textos y Web Mining
  6. Data mining y marketing
  1. Aproximación al concepto de DataMart
  2. Bases de datos OLTP
  3. Bases de Datos OLAP
  4. MOLAP, ROLAP & HOLAP
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General: ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  1. ¿Qué es el Data Storytelling?
  2. Elementos clave del Data Storytelling
  3. ¿Por qué es importante el Data Storytelling?
  4. ¿Cómo hacer Data Storytelling?
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Computing
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL Una base de datos relacional
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB: Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB: Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Una aproximación a PENTAHO
  2. Soluciones que ofrece PENTAHO
  3. MongoDB & PENTAHO
  4. Hadoop & PENTAHO
  5. Weka & PENTAHO
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. Minería de datos
  2. ¿Qué podemos hacer con data Mining?
  3. ¿Qué usos puede tener el data Mining?
  4. Metodología de la minería de datos
  5. Algunas técnicas estadísticas utilizadas en data mining
  6. Árboles de decisión
  7. Reglas de inducción
  8. Redes Bayesanas
  9. Algoritmos Genéticos
  1. Ciclo data mining
  2. Minería de Textos y Web Mining
  3. Data mining y marketing
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. ¿Qué es la visualización de datos?
  2. Importancia y herramientas de la visualización de datos
  3. Visualización de datos: Principios básicos
  1. ¿Qué es Tableau? Usos y aplicaciones
  2. Tableau Server: Arquitectura y Componentes
  3. Instalación Tableau
  4. Espacio de trabajo y navegación
  5. Conexiones de datos en Tableau
  6. Tipos de filtros en Tableau
  7. Ordenación de datos, grupos, jerarquías y conjuntos
  8. Tablas y gráficos en Tableau
  1. Fundamentos D3
  2. Instalación D3
  3. Funcionamiento D3
  4. SVG
  5. Tipos de datos en D3
  6. Diagrama de barras con D3
  7. Diagrama de dispersión con D3
  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos
  1. ¿Qué es Power BI?
  2. Funciones de Power BI
  3. Versiones de Power BI
  4. Roles de Power BI
  5. Planificación de proyectos con Power BI
  1. Instalación y puesta en marcha
  2. Conexión de datos a Power BI
  3. Filtrado de datos
  4. Vista de datos
  1. Introducción al modelado de datos
  2. Creación de medidas
  3. Creación y relación entre tablas
  4. Creación de columnas y medidas calculadas
  5. Dinamizar columnas
  6. Fórmulas de consulta
  1. Creación de gráficas
  2. Tablas dinámicas
  3. Segmentación de datos
  4. Uso de objetos visuales
  5. Formas y cuadros de texto
  6. Imágenes
  7. Matrices y tablas
  8. Cómo crear un velocímetro
  9. Mapas
  10. Slicers
  11. Cómo modificar colores
  1. Uso del Dashboard
  2. Compartir Dashboards
  3. Añadir Widgets
  4. Cómo crear reportes
  5. Ajustes del panel
  6. Preguntas y respuestas del Dashboard
  1. Exportar datos de Power BI a Excel
  2. Exportar Dashboards
  3. Crear paquetes de contenido
  4. Presentación de informes
  5. Cómo públicar y compartir informes
  6. Introducción a Power BI mobile
  1. ¿Qué es la analítica web?
  2. Establecimiento de objetivos y KPIs
  3. Métricas principales y avanzadas
  4. Objetivos y ventajas de medir
  5. Plan de medición
  1. Introducción a Google Analytics 4
  2. Interfaz
  3. Métricas y dimensiones
  4. Informes básicos
  5. Filtros
  6. Segmentos
  7. Eventos
  8. Informes personalizados
  9. Comportamiento de los usuarios e interpretación de datos
  1. Introducción a GTM
  2. Implementación con GTM
  3. Medición con GTM
  4. Uso de Debug/Preview Mode
  1. La atribución
  2. Multicanalidad
  3. Customer Journey
  4. Principales modelos de atribución
  5. Modelos de atribución personalizados
  1. Planificación del Dashboard
  2. Características del Dashboard
  3. Introducción a Data Studio
  4. Conectores
  5. Tipos de gráficos
  6. Personalización de informes
  7. Elementos de control
  8. Dimensiones y métricas
  9. Campos Calculados
  10. Compartir informes
  1. Introducción al SEO
  2. Historia de los motores de búsqueda
  3. Componentes de un motor de búsqueda
  4. Organización de resultados en un motor de búsqueda
  5. La importancia del contenido
  6. El concepto de autoridad en Internet
  7. Campaña SEO
  1. Introducción al SEM
  2. Principales conceptos en SEM
  3. Sistema de pujas y Calidad del anuncio
  4. Primer contacto con Google Ads
  5. Creación de anuncios con calidad
  6. Indicadores clave de rendimiento en SEM
  1. Análisis del tráfico en redes sociales
  2. Fijar objetivos en redes sociales
  3. Facebook
  4. Twitter
  5. Youtube
  6. LinkedIn
  7. Tik tok
  8. Instagram
  1. Usabilidad
  2. Mapas de calor
  3. Grabaciones de sesiones de usuario
  4. Ordenación de tarjetas
  5. Test A/B
  6. Test multivariante
  7. KPI, indicadores clave de rendimiento
  8. Cambios a realizar para optimizar una página web
  1. Hotjar
  2. Microsoft Power BI
  3. Google Search Console
  4. Matomo
  5. Awstats
  6. Chartbeat
  7. Adobe Analytics
  1. ¿Qué son las cookies?
  2. Tipos de cookies
  3. GDPR
  4. Herramientas para manejar el consentimiento de cookies

¿Con quién vas a aprender? Conoce al claustro

Rafael – Docentes

Rafael Marín

Ingeniero técnico en Informática de Sistemas por la Universidad de Granada (UGR), con un Curso Superior en Ciberseguridad, Business Intelligence y Big Data. Apasionado de la informática y de las nuevas tecnologías, cuenta con 10 años de experiencia y vocación en el ámbito TIC y la programación de software. Experto en Desarrollo web, Programación de aplicaciones, Análisis de datos, Big Data, Ciberseguridad y Diseño y experiencia de usuario (UX/UI).

Ir a Linkedin Icono de flecha
Bibiana – Docentes

Bibiana Moreno Leyva

CEO de EducaLMS, proyecto de innovación educativa. Técnica superior en Desarrollo de Aplicaciones Informáticas. Cuenta con más de seis años de experiencia profesional en la coordinación de análisis de aplicaciones multiplataforma y cinco años en desarrollo de aplicaciones web con distintas infraestructuras.

Ir a Linkedin Icono de flecha
Daniel – Docentes

Daniel Rodriguez

Licenciado en Ingeniería Técnica en Informática de Sistemas. Cuenta con más de 10 años de experiencia en el desarrollo y soporte de la aplicación corporativa integral de gestión de matrículas y expedientes académicos, tutorización, facturación, logística, seguimiento del alumnado, así como gestión de grupos y convocatorias de formación. 
Experto en desarrollado en aplicaciones web, servicios web, APIs e informes de Crystal Reports, dominando base de datos y lenguajes como Transact-SQL. Realiza las funciones propias de un FullStack Developer, siendo especialista en ASP.NET, jQuery, CSS (Bootstrap, Sass) y web services. Además, cuenta con gran experiencia en desarrollo de proyectos en equipo, resolución de problemas y formación de personas de prácticas en la incorporación a un puesto de trabajo.
 

Ir a Linkedin Icono de flecha
Isaías – Docentes

Isaías Aranda Cano

Grado Superior en Administración de Sistemas Informáticos. Especialista en ciberseguridad y en el diseño, implementación y gestión de servicios en la nube (Google, AWS, Azure,). Certificado en ITIL V3.
Más de 15 años de experiencia implementando y gestionando tecnologías en alta disponibilidad Open Source. 
 

Ir a Linkedin Icono de flecha
Juan Antonio – Docentes

Juan Antonio Cortés Ibáñez

Graduado en Ingeniería Informática por la UGR con Máster Universitario Oficial en Ciencia de Datos e Ingeniería de Computadores por la UGR. Doctorando en Tecnologías de la Información por la UGR. Cuenta con amplia experiencia como Científico de datos en el Repsol Technology Lab y en el sector de la docencia.

Ir a Linkedin Icono de flecha

Metodología

EDUCA LXP se basa en 6 pilares

Item
Estrellas

Distintiva

EDUCA EDTECH Group es proveedor de conocimiento. Respaldado por el expertise de nuestras instituciones educativas, el alumnado consigue una formación relevante y avalada por un sello de calidad como es el grupo EDUCA EDTECH.

Gráfica

Realista

La metodología EDUCA LXP prescinde de conocimientos excesivamente teóricos o de métodos prácticos poco eficientes. La combinación de contenidos en constante actualización y el seguimiento personalizado durante el proceso educativo hacen de EDUCA LXP una metodología única.

Birrete

Student First

La metodología EDUCA LXP y la formación del grupo EDUCA EDTECH conciben al estudiante como el centro de la experiencia educativa, nutriéndose de su retroalimentación. Su feedback es nuestro motor del cambio.

Inteligencia Artificial

Inteligencia Artificial

La personalización en el aprendizaje no sería posible sin una combinación precisa entre experiencia académica e investigación tecnológica, así como la Inteligencia Artificial. Por eso contamos con herramientas IA de desarrollo propio, adaptadas a cada institución educativa del grupo.

Monitor

Profesionales en activo

Nuestro equipo de profesionales docentes, además de ser especialistas en su sector, cuentan con una formación específica en el manejo de herramientas tecnológicas que conforman el ecosistema EDUCA EDTECH.

Libro

Timeless Learning

La formación debe ser una experiencia de vida, concibiendo el e-learning como una excelente solución para los desafíos de la educación convencional. Entendemos el aprendizaje como un acompañamiento continuo del estudiante en cada momento de su vida.

Titulación

Titulación Universitaria de Máster de Formación Permanente en Transformación Digital y Data Analytics con 1500 horas y 60 créditos ECTS por la Universidad Católica de Murcia
Universidad Católica de Murcia

¿Qué dicen de INESEM los que han realizado el master?

Icono estrella completaIcono estrella completaIcono estrella completaIcono estrella completaIcono estrella vacia4,0

Elegí este master porque el temario era acorde con lo que estaba buscando, la modalidad virtual y el precio se ajustaban a mi idea inicial. Estoy seguro de que va a aportar mucho a mi CV. He adquirido conocimientos clave en análisis de datos e información, procesamiento de datos, procesos ETL, elaboración y despliegue de un proyecto Big Data, entre otros. Me ha fascinado el poder de las herramientas y la aplicación de sus resultados a la empresa.

Leandro J. B.
Icono estrella completaIcono estrella completaIcono estrella completaIcono estrella completaIcono estrella completa5,0

Me quiero dedicar profesionalmente a algo relacionado con Business Intelligence y Big Data así que, quería formarme más. Me encantó el temario de este curso. He aprendido como se pueden usar los datos para obtener información y tomar decisiones empresariales. Lo recomiendo.

Paola E. R.
Icono estrella completaIcono estrella completaIcono estrella completaIcono estrella completaIcono estrella completa5,0

He podido aprender la existencia y el uso general de varias de las herramientas para análisis de información, incluyendo el tema de las bases de datos que me parecía magnifico. Me ha gustado mucho el contenido de este máster porque se encuentra actualizado y acorde con los elementos que se requieren del mercado en este aspecto. Definitivamente es un buen complemento para los que tenemos experiencia en marketing y además conocimientos de TI avanzados. Me gustaría agradecerles por todo el apoyo durante este tiempo en la consecución de este máster.

John David P. M.

Explora nuestras Áreas Formativas

Construye tu carrera profesional

Descubre nuestro amplio Catálogo Formativo, incluye programas de Cursos Superior, Expertos, Master Profesionales y Master Universitarios en las diferentes Áreas Formativas para impulsar tu carrera profesional.

Master en Transformación Digital y Data Analytics + 60 Créditos

Icono de modalidad 100% Online
Icono de créditos ECTS 60 ECTS
Icono de duración 1500 H
Icono de flexibilidad horaria Flexibilidad horaria
Precio
2195€
Matricularme